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Both music and language are found in all known human societies, yet no studies have compared similarities and
differences between song, speech, and instrumental music on a global scale. In this Registered Report, we ana-
lyzed two global datasets: (i) 300 annotated audio recordings representing matched sets of traditional songs, re-
cited lyrics, conversational speech, and instrumental melodies from our 75 coauthors speaking 55 languages; and
(i) 418 previously published adult-directed song and speech recordings from 209 individuals speaking 16 languages.
Of our six preregistered predictions, five were strongly supported: Relative to speech, songs use (i) higher pitch,
(ii) slower temporal rate, and (iii) more stable pitches, while both songs and speech used similar (iv) pitch interval
size and (v) timbral brightness. Exploratory analyses suggest that features vary along a“musi-linguistic” continuum
when including instrumental melodies and recited lyrics. Our study provides strong empirical evidence of cross-

cultural regularities in music and speech.

Before submitting to Science Advances for further review, this
Registered Report (Stage 2) was peer-reviewed and recommended
for publication by Peer Community In Registered Reports
(PCI-RR) (1). Stage 1 (review of the design and analysis) was also
reviewed by PCI-RR (2). The authors have moved parts of the
preregistered Introduction and Methods sections to fit Science
Advances formatting requirements but have not changed their
content from the version that was granted In Principle Acceptance
by PCI-RR on 17 January 2023 (except where explicitly noted in
the text).

INTRODUCTION

Language and music are both found universally across cultures, yet
in highly diverse forms (3-7), leading many to speculate on their
evolutionary functions and possible coevolution (8-13). However,
this speculation still lacks empirical data to answer the question:
What similarities and differences between music and language are
shared cross-culturally? Although comparative research has revealed
distinct and shared neural mechanisms for music and language (9,
14-19), there has been relatively less comparative analysis of acoustic
attributes of music and language (20, 21) and even fewer that directly
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compare the two most widespread forms of music and language that
use the same production mechanism: vocal music (song) and spoken
language (speech).

Cross-cultural analyses have identified “statistical universals”
shared by most of the world’s musics and/or languages (22-25). In
music, these include regular rhythms, discrete pitches, small me-
lodic intervals, and a predominance of songs with words (rather
than instrumental music or wordless songs) (5, 25). However, non-
signed languages also use the voice to produce words, and other
proposed musical universals may also be shared with language
(e.g., discrete pitch in tone languages, regular rhythms in “syllable-
timed”/“stress-timed” languages, and use of higher pitch when
vocalizing to infants) (9, 13, 26-28). Moreover, vocal parameters of
speech and singing, such as fundamental frequency and vocal tract
length as estimated from formant frequencies, are strongly intercor-
related in both men and women (10).

Many hypotheses make predictions about cross-cultural similari-
ties and differences between song and speech. For example, the so-
cial bonding hypothesis (11) predicts that song is more predictably
regular than speech to facilitate synchronization and social bonding.
In contrast, the motor constraint hypothesis of Tierney et al. (28)
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predicts similarities in pitch interval size and melodic contour due
to shared constraints on sung and spoken vocalization. Similarly,
the sexual selection hypothesis predicts similarities between singing
and speaking due to their redundant functions as “backup signals”
indicating similar underlying mate qualities (e.g., body size) (10).
Last, culturally relativistic hypotheses instead predict neither regular
cross-cultural similarities nor differences between song and speech
but rather predict that relationships between song and speech are
strongly culturally dependent without any universal regularities (29).
Culturally relativistic hypotheses appear to be dominant among
ethnomusicologists. For example, in a 13 January 2022 email to the
International Council for Traditional Music email list entitled “What
is song?,” International Council for Traditional Music Vice-President
Don Niles requested definitions for “song” that might distinguish it
from “speech” cross-culturally. Much debate ensued, but the closest to
such a definition that appeared to emerge, was the following conclu-
sion published by Savage et al. (25) based on a comparative analysis
of 304 audio recordings of music from around the world:
“Although we found many statistical universals, absolute musical
universals did not exist among the candidates we were able to test.
The closest thing to an absolute universal was Lomax and Grauer’s
(30) definition of a song as a vocalization using “discrete pitches or
regular rhythmic patterns or both,” which applied to almost the
entire sample, including instrumental music. However, three musi-
cal examples from Papua New Guinea containing combinations of

friction blocks, swung slats, ribbon reeds, and moaning voices con-
tained neither discrete pitches nor an isochronous beat. It should be
noted that the editors of the Encyclopedia did not adopt a formal
definition of music in choosing their selections. We thus assume
that they followed the common practice in ethnomusicology of de-
fining music as “humanly organized sound” (31) other than speech,
with the distinction between speech and music being left to each
culture’s emic (insider and subjective) conceptions, rather than be-
ing defined objectively by outsiders. Thus, our analyses suggest that
there is no absolutely universal and objective definition of music but
that Lomax and Grauer’s definition may offer a useful working defi-
nition to distinguish music from speech.”

However, the conclusion of Savage et al. (25) was based only on
an analysis of music; thus, the contrast with speech is speculative
and not based on comparative data. Some studies have identified dif-
ferences between speech and song in specific languages, such as song
being slower and higher-pitched (32-35). However, a lack of anno-
tated cross-cultural recordings of matched speaking and singing has
hampered attempts to establish cross-cultural relationships between
speech and song (36). The available dataset closest to our study is
Hilton et al.’s (26) recordings sampled from 21 societies. Their data-
set covers 11 language families, and each participant produced a set
of adult-directed and infant-directed song and speech. However,
their dataset was designed to independently compare adult-directed
versus infant-directed versions of song and of speech, and they
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did not directly compare singing versus speaking. We performed ex-
ploratory analyses of their dataset (37) but found that since their da-
taset does not include manual annotations for acoustic units (e.g.,
note, syllable, sentence, phrase, etc.), it is challenging to analyze and
compare key structural aspects such as pitch intervals, pitch contour
shape, or note/syllable duration. While automatic segmentation can
be effective for segmenting some musical instruments and animal
songs [e.g., percussion instruments (38) and bird song notes sepa-
rated by microbreaths (39)], we found that they did not provide
satisfactory segmentation results compared to human manual an-
notation for the required task of segmenting continuous song/
speech into discrete acoustic units such as notes or syllables (com-
pare fig. S6). For example, Mertens’ (40) automated segmentation
algorithm used by Hilton et al. (26) mis-segmented two of the first
three words “by a lonely” from the English song used in our pilot

Instrumental music g

Q

A £

=

5
£

3 .

c c

-5 S
-
o
o
o
e
k7]
-
oT1]
£

" o

o 5

= 'S

= =

©

Q

2

\

Q

(]

Spoken language

analyses (“The Fields of Athenry”), oversegmenting “by” into “b-y;”
and undersegmenting “lonely” by failing to divide it into “lone-ly”
(compare fig. S6 for systematic comparison of annotation by auto-
mated methods and by humans speaking five different languages
from our pilot data).

Our study overcomes these issues by creating a unique dataset
of matched singing and speaking of diverse languages, with each
recording manually segmented into acoustic units (e.g., syllables,
notes, and phrases) by the coauthor who recorded it in their own
first/heritage language. Furthermore, because singing and speaking
exist on a broader “musi-linguistic” spectrum including forms such
as instrumental music and poetry recitation (41-43), we collected
four types of recordings to capture variation across this spectrum:
(i) singing, (ii) recitation of the sung lyrics, (iii) spoken description
of the song, and (iv) instrumental version of the sung melody (Fig. 1).
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Fig. 1. Example excerpts of the four recording types collected in this study arranged in a musi-linguistic continuum from instrumental music to spoken
language. Spectrograms [x axis, time (in seconds); y axis, frequency (in hertz)] of the four types of recordings are displayed on the right-hand side (excerpts of author
Savage performing/describing “Twinkle Twinkle Little Star,” using a piano for the instrumental version). Blue dashed lines show the schematic illustration of the mapping
between the audio signal and acoustic units (here syllables/notes). For this Registered Report, we focus our confirmatory hypothesis only on comparisons between sing-
ing and spoken description (red rectangles), with recited and instrumental versions saved for post hoc exploratory analysis.
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The spoken description represents a sample of naturalistic speech.
In contrast, the lyrics recitation allows us to control for potential
differences between the words and rhythmic structures used in
song versus natural speech by comparing the exact same lyrics
when sung versus spoken but, as a result, may be more analogous
to poetry than to natural speech. The instrumental recording is in-
cluded to capture the full musi-linguistic spectrum from instru-
mental music to spoken language, allowing us to determine how
similar/different music and speech are when using the same effec-
tor system (speech versus song) versus a different system (speech
versus instrument).

Study aims and hypotheses

Our study aims to determine cross-cultural similarities and differ-
ences between speech and song. Many evolutionary hypotheses
result in similar predicted similarities/differences between speech
and song: for example, song may use more stable pitches than
speech to signal desirability as a mate and/or to facilitate harmo-
nized singing and by association bond groups together or signal
their bonds to outside groups (44). These similarities and differ-
ences between song and speech could arise through a combina-
tion of purely cultural evolution, purely biological evolution, or
some combination of gene-culture coevolution (11, 45, 46). Rath-
er than try to disambiguate these ultimate theories, we focus on
testing more proximate predictions about similarities and differ-
ences in the acoustic features of song and speech, which can then
be used to develop more cross-culturally general ultimate theories
in future research. Through literature review and pilot analysis (de-
tails provided in the “Pilot data analysis” section in the Supplemen-
tary Materials), we settled on six features that we believe we can
reliably test for predicted similarities/differences: (i) pitch height,
(ii) temporal rate, (iii) pitch stability, (iv) timbral brightness, (v)
pitch interval size, and (vi) pitch declination (compare Table 1).
Detailed speculation on the possible mechanisms underlying po-
tential similarities and differences are described in the “Literature
review of hypotheses and potential mechanisms” section in the
Supplementary Materials.

RESULTS

We have recruited 75 collaborators from around the world, span-
ning the speakers of 21 language families (Fig. 2) [Note: language
classification follows the conventions of Glottolog and the World
Atlas of Language Structures (47, 48)]. Approximately 85% of our
coauthors are first-language speakers of their recorded language
(compare the “List of songs, instruments, and languages” section in
the Supplementary Materials). Note that 6 of the original 81 planned
coauthors were unable to complete the recording and annotation
process compared to our initially planned sample (compare the
Fig. 2 map with the originally planned fig. S1 map). These six col-
laborators were excluded, following our exclusion criteria (com-
pare the “Exclusion criteria and data quality checks” section in the
Supplementary Materials). Two collaborators (Thorne and Hereld)
submitted recording sets with spoken descriptions in English in-
stead of the language of their song (Te Reo Maori and Cherokee,
respectively), and have not yet been able to rerecord themselves
in the correct language as required by the “Recording protocol”
(which can be found in the Supplementary Materials). Hereld’s re-
cording set is also an uncontrolled amalgam of recordings made

Ozaki et al., Sci. Adv. 10, eadm9797 (2024) 15 May 2024

for different settings. We have thus included Thorne and Hereld’s
recordings for the exploratory analyses but excluded them from
the confirmatory analyses (i.e., 73 recording sets were used in the
confirmatory analysis).

All audio recordings analyzed are made by our group of 75 coauthors
recording ourselves singing/speaking in our first/heritage languages.
Collaborators were chosen by opportunistic sampling beginning from
cocorresponding author Savage’s network of researchers (compare the
“Language sample” section in the Supplementary Materials for de-
tails). Each coauthor made four recordings: (i) singing a traditional
song chosen by the singer themself, (ii) reciting the song’s lyrics, (iii)
spoken description of the song’s meaning, and (iv) instrumental ver-
sion of the song’s melody. The first 20 s of each recording was used
for confirmatory analyses. Note that 28 instrumental recordings
were made by clapping the rhythm of songs or using electronic in-
struments whose pitches are mechanically controlled. These record-
ings were excluded from analyses involving features related to pitch,
such as pitch height. Although we asked coauthors to record tradi-
tional songs of their cultures, the chosen songs are not necessarily
representative of the repertoires of their traditions. We did not col-
lect standardized information about the function/context of songs,
but the word clouds of lyrics translated to English (compare Fig. 2B)
may provide an idea about what the songs are about, as do the Eng-
lish translations of the spoken descriptions (all available with other
data at https://osf.io/mzxc8).

We compared the following six acoustic features (Fig. 3; compare
the “Features” section in the Supplementary Materials for details)
between song and speech for our main confirmatory analyses:

1) Pitch height [fundamental frequency (fy)] (in hertz). fy is esti-
mated with a custom tool in a semiautomated way like the annota-
tion in the Erkomaishvili dataset (49), which used an interactive f;
extraction tool (50).

2) Temporal rate [interonset interval (IOI) rate] (in hertz). The
unit of 101 is seconds, and IOI rate is the reciprocal of IOI. Onset
represents the perceptual center (P-center) of an acoustic unit (e.g.,
syllables, mora, and note), which represents the subjective moment
when the sound is perceived to begin. The P-center can be interpret-
ed to reflect the onset of linguistic units (e.g., syllable and mora)
and musical units (e.g., note), with the segmentation of acoustic
units determined by the person who made the recording. This
measure includes the interval between a break and the onset im-
mediately preceding the break. Breaks were defined as relatively
long pauses between sounds. For vocal recordings, that would typi-
cally constitute when the participant would inhale.

3) Pitch stability (—|Afo|) (in cents per second).

4) Timbral brightness (spectral centroid) (in hertz).

5) Pitch interval size (fy ratio) (in cents). Absolute value of pitch
ratio converted to the cent scale.

6) Pitch declination (sign of f, slope) (dimensionless). Sign of the
coefficient of robust linear regression fitted to the phrase-wise fj
contour. A phrase is identified by the onset annotation after the
break annotation (or the initial onset annotation for the first phrase)
and the first break annotation following that.

For each feature, we compared its distribution in the song record-
ing with its distribution in the spoken description by the same singer/
speaker, converting their overall combined distributions into a single
scalar measure of nonparametric standardized difference (compare
Materials and Methods). Details can be found in the “Features” sec-
tion in the Supplementary Materials. Temporal rate, pitch interval
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Fig. 2. Visualization of the diversity of the primary sample of 300 audio recordings of singing/speaking/recitation/instrumental melodies. Map of the linguistic
varieties spoken by our 75 coauthors as first/heritage languages (A). (Note: 6 of the original 81 planned coauthors were unable to complete the recording and annotation
process compared to our initially planned sample; compare fig. S1 for the original map of 81 linguistic varieties). Each circle represents a coauthor singing and speaking
in their first (L1) or heritage language. The geographic coordinates represent their hometown where they learned that language. In cases when the language name pre-
ferred by that coauthor (ethnonym) differs from the L1 language name in the standardized classification in the Glottolog (47), the ethnonym is listed first, followed by the
Glottolog name in round brackets. Language family classifications (in bold) are based on Glottolog. Square brackets indicate geographic locations for languages repre-
sented by more than one coauthor. Atlantic-Congo, Indo-European, and Sino-Tibetan languages are further grouped by genus defined by the World Atlas of Language
Structures (48). The word clouds outline the most common textual content of English translations of the song lyrics (B) and spoken descriptions (C) provided by our
75 coauthors (larger text indicates words that appear more frequently).
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Fig. 3. Schematic illustration of the six features analyzed for confirmatory analysis, using a recording of author Savage singing the first two phrases of “Twinkle
Twinkle Little Star” as an example. Onset and breathing annotations are based on the segmented texts displayed on the top of the spectrogram. The y axis is adjusted
to emphasize the fy contour, so note that the spectral centroid information is not fully captured (e.g., high spectral centroid due to the consonant). The bottom figure
shows pitch stability (rate of change of fy or derivative of the fy contour equivalently) of the sung f;.

size, and pitch declination rely on the onset and break segmentations
(roughly corresponding to note/syllable and phrase/breath boundaries,
respectively). These segmentations were made manually by the
coauthor who made the recording, as they are determined subjec-
tively by the perception of the coauthors, as described above.
First author Ozaki performed millisecond-level onset annotations
of all recordings based on these segmentations, and coauthors
checked the quality of annotations of their recordings (compare the
“Recording and segmentation protocol” section in the Supplemen-
tary Materials).

Confirmatory analysis

The results of the confirmatory hypothesis testing with 73 recording
sets confirmed five of our six predictions (Fig. 4 and table S1; all P <
1 x 107°). Specifically, relative to spoken descriptions, songs used
significantly higher pitch (translated Cohen’s D = 1.6), slower tempo-
ral rate (D = 1.6), and more stable pitches (D = 0.7), while both
spoken descriptions and songs used significantly equivalent timbral
brightness and pitch interval size (both D < 0.15). The one exception
was pitch declination, which was not significantly equivalent be-
tween speech and song (P = 0.57), with an estimated effect size of
D = 0.42 slightly greater than our prespecified “smallest effect size of
interest” (SESOI) of D = 0.4. In the “Alternative analysis approach-
es for pitch declination (hypothesis 6)” section, we performed alter-
native exploratory analyses to understand possible reasons for this
failed prediction.

Our robustness checks (compare the “Robustness analyses” sec-
tion in the Supplementary Materials) confirmed that the tests
with the recordings excluding collaborators who knew the hy-
potheses when generating data lead to the same decisions regard-
ing the rejection of the null hypotheses (table S2). This result
suggests that our unusual “participants as coauthors” model did
not influence our confirmatory analyses. In addition, the other
robustness check suggests that the measured effect sizes did not
have language family-specific variance (table S3), which supports

Ozaki et al., Sci. Adv. 10, eadm9797 (2024) 15 May 2024

the appropriateness of the use of simple random-effect models in
the analyses.

Exploratory analysis

More acoustic features

We specified six features for our confirmatory analyses, but human
music and speech can be characterized by additional acoustic features.
We included seven additional features to probe further similar and
different aspects of music and speech, namely, rhythmic regularity,
phrase length (duration between two breaths/breaks), pitch interval
regularity, pitch range, intensity, pulse clarity, and timbral noisiness
(compare the “Exploratory features” section in the Supplementary
Materials). All 13 features were ones that we explored in our stage
1 pilot analyses based on previous analyses of acoustic features of
music and speech (fig. S9). However, we chose to limit our confir-
matory (preregistered) analyses to the six features that seemed most
promising when considering both theoretical debate and pilot data
to ensure sufficient statistical power to reliably test our hypotheses.
For completeness, we also included the remaining seven features as
exploratory analyses. Although we did not formally construct and
test hypotheses for this analysis, Fig. 4 suggests that phrase length,
intensity, and timbral noisiness may also inform differences between
song and speech and pitch range can be another candidate for dem-
onstrating similarities between song and speech. Specifically, songs
appear to have longer intervals between breathing and higher sound
pressure and have less vocal noise than speech. Note that the order
of comparison was arranged so that difference is expressed as a pos-
itive value, so that difference in timbral noisiness was calculated as
noisiness of spoken description relative to song (compare Materials
and Methods).

Music-language continuum: Including instrumental melodies
and recited lyrics

Exploratory analyses that included comparisons with lyrics recita-
tion and instrumental recordings (compare Fig. 5 and fig. S13) sug-
gest that (i) comparing singing versus lyrics recitation showed
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Fig. 4. Plot of effect sizes showing differences of each feature between singing and spoken description of the 73 recording sets for the confirmatory analysis and
75 recording sets for the exploratory analysis. The plot includes seven additional exploratory features, and the six features corresponding to the main confirmatory
hypotheses are enclosed by the red rectangle. Confidence intervals are created using the same criteria in the confirmatory analysis (i.e., a = 0.05/6). Each circle represents
the effect size from each recording pair of singing and spoken description, and the set of effect sizes is measured per recording pair. Readers can find further information
about how to interpret the figure in the caption of figs. S2 and S9. Note that the colors of data points indicate language families, which are coded the same as in Fig. 2, and

violin plots are added to this figure compared to fig. S2.

qualitatively the same results as for singing versus spoken description
in terms of how confidence intervals intersect with the null point and
the equivalence region; (ii) comparing instrumental versus speech
(both spoken description/lyrics recitation) revealed larger differences
in pitch height, temporal rate, and pitch stability than found with
song versus speech; (iii) features shown to be similar between song
versus speech (e.g., timbral brightness and pitch interval size) showed
differences when comparing instrumental versus speech; (iv) few ma-
jor differences were observed between lyrics recitation and spoken
description, except that recitation tended to be slower and use shorter
phrases; (v) instrumental performances generally had a more ex-
treme (larger/smaller) magnitude than singing for each feature except
for temporal rate; and (vi) pitch height, temporal rate, and pitch sta-
bility displayed a noticeable constantly increasing (or decreasing)
continuum from spoken description to instrumental.

A similar trend was also found in additional differentiating
features discussed in the “More acoustic features” section (i.e.,

Ozaki et al., Sci. Adv. 10, eadm9797 (2024) 15 May 2024

phrase length, timbral noisiness, and loudness). We also performed
a nonparametric trend test (compare, table S4) to quantitatively assess
the existence of trends, and the result suggests that features other
than pitch interval size and pitch range display increasing/decreasing
trends. These results tell us how acoustic characteristics are ma-
nipulated through the range of acoustic communication from spo-
ken language to instrumental music.

Demographic factors: Sex differences in features

Because we had a similar balance of female (1 = 34) and male (n =41)
coauthors, we were able to perform exploratory analysis comparing
male and female vocalizations (fig. S14). These analyses suggest that
while there is some overlap in their distribution (e.g., some male
speaking/singing was higher than some female speaking/singing),
on average, female vocalizations were consistently higher-pitched
than male vocalizations regardless of the language sung/spoken [by
~1000 cents (almost one octave) consistently for song, spoken de-
scription, and recited lyrics]. Specifically, the average frequencies of
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Fig. 5. Mean values of acoustic features arranged along a “musi-linguistic continuum” from instrumental melodies to spoken descriptions. This is an alternative
visualization of the same sung/spoken data from Fig. 4, but showing mean values of each feature rather than paired differences, and now also including data for instru-
mental melodies and recited lyrics. The cent scale of fy is converted from Hertz, where 440 Hz corresponds to 0 cents and an octave interval equals 1200 cents. Note that
the colors of data points indicate language families, which are coded the same as in Fig. 2. The horizontal lines in the violin plots indicate the median.

our data are as follows: male song, 161.3 Hz; male spoken descrip-
tion, 114.2 Hz; female song, 289.9 Hz; and female spoken descrip-
tion, 199.9 Hz. Incidentally, the data of Hilton et al. (26) also provide
a similar result: male song, 152.6 Hz; male speech, 130.7 Hz; female
song, 251.4 Hz; and female speech, 209.7 Hz. However, there was
no apparent sexual dimorphism in vocal features other than pitch
height (e.g., temporal rate, pitch stability, timbral brightness, etc.).
Although this analysis is exploratory, this result is consistent with
past research that often focuses on vocal pitch as a likely target of
sexual selection (10, 51-55).

Ozaki et al., Sci. Adv. 10, eadm9797 (2024) 15 May 2024

Analysis by linguistic factors: Normalized pairwise

variability index

We used normalized pairwise variability index (nPVI) (56) to exam-
ine the degree of variation in IOIs and onset-break intervals (com-
pare the “Temporal rate” and “Break annotation” sections in the
Supplementary Materials) of our song and speech recordings. nPVI
provides large values if adjacent intervals differ in duration on average
and vice versa. Thus, nPVI can capture durational contrasts between
successive elements. It was originally developed to characterize
vowel duration of stress-timed and syllable-timed languages (57),
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although our duration is defined by the sequence of onset (compare
the “Recording and segmentation protocol” section in the Supple-
mentary Materials) and break annotations (compare the “Break an-
notation” section in the Supplementary Materials) that are neither the
same as vowel duration nor vocalic intervals. In this exploratory
analysis, we mapped nPVTs of song and spoken description record-
ings of each collaborator on a two-dimensional space to explore po-
tential patterns and also visualized the density of nPVIs per recording
type (compare fig. S20). However, we observed that (i) nPVIs of
song and spoken description did not seem to create distinct clusters
among our recordings (whether into syllable-timed, stress-timed, or
any other categories); (ii) nPVIs tended to increase along the musi-
linguistic continuum, progressing from instrumental to spoken de-
scription; and (iii) nPVIs of song and spoken description did not have
a clear correlation (Pearson’s r = 0.087), while nPVIs of song and in-
strumental recording do show a substantial correlation (Pearson’s
r=0.52). The first result does not necessarily imply that nPVIs are not
helpful in classifying recordings into rhythm categories. There is a
possibility that languages are actually well separated by rhythm class-
es (e.g., stress-timed, syllable-timed, and mora-timed) in fig. S20, al-
though we could not find information about rhythm classes of all
languages in our recordings. The first result suggests that data-driven
discovery of rhythm categories is challenging with nPVIs for our
data, although evaluating its capability to predict rhythm categories
needs a different analysis. The second result suggests that durational
contrast of speech is more variable compared to singing and instru-
mental, which is consistent with past work showing that music tends
to have limited durational variability worldwide (25). Last, although
linguists use various features (58) to carefully characterize the rhythm
of speech, the third result suggests that song rhythm is potentially
independent of speech rhythm even when produced by the same
speaker in the same language, which suggests that temporal control of
song and speech may obey different communicative principles.
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Reliability of annotation process: Interrater reliability of onset
annotations

We analyzed the interrater reliability of onset annotations to check
how large individual variation is in the annotation. Savage created
onset annotations to the first 10 s of randomly chosen eight pairs of
song and spoken description recordings (compare the “Reliability of
annotation process” section in the Supplementary Materials). In this
10-s annotation, Savage created onset annotations using the same
segmented text as Ozaki (the text provided by the coauthor who
made the recording) but was blinded from the actual annotation
created by Ozaki and confirmed by the coauthor who made the re-
cording. Therefore, the annotation by Savage follows the same
segmentation as the annotation by Ozaki but can differ in the exact
timing for which each segmentation is judged to begin. We mea-
sured intraclass correlations of onset times with two-way random-
effects models measuring absolute agreement. As a result, all
annotations showed that strong intraclass correlations (>0.99),
which indicates that who performs the annotation may not matter
as long as they strictly follow the segmentation indicated in seg-
mented texts. Alternative exploratory analysis inspecting the distri-
bution of differences in onset times was also conducted (compatre,
fig. S21). In the case of singing, 90% of onset time differences were
within 0.083 s. Similarly, in the case of spoken description, 90% of
onset time differences were within 0.055 s. That is, Ozaki’s manual
onset annotations that formed a core part of our dataset have been
confirmed by the coauthor who produced each recording and by
Savage’sindependent blind codings to be highly accurate and reliable.
Exploring recording representativeness and automated
scalability: Comparison with alternative speech-song dataset
We performed two exploratory analyses using automated methods
to investigate (i) the reproducibility of our findings with another
corpus and (ii) the applicability of automated methods to substitute
data extraction processes involving manual work (Fig. 6; compare

B Pitch stability C Timbral brightness

4 .,_‘ N
1 2 3 4 5 6 7 -1 0 1 2 3 4 5 6 7
Translated Cohen's D Translated Cohen's D

Fig. 6. Rerunning the analyses on four different samples using different fundamental frequency extraction methods. Three features could be directly compared
between the different samples: pitch height (A), pitch stability (B), and timbral brightness (C). The following samples were compared: (i) Our full sample (matched song
and speech recordings from our 75 coauthors); (ii) Hilton et al.’s (26) full sample (matched song and speech recordings from 209 individuals); (iii) a subsample of our 14
coauthors singing/speaking in English, Spanish, Mandarin, Kannada, and Polish; and (iv) a subsample of Hilton et al.'s (26) 122 participants also singing/speaking in Eng-
lish, Spanish, Mandarin, Kannada, and Polish). “SA” means that f, values are extracted in a semiautomated manner (compare the “Pitch height” section in the Supplemen-
tary Materials), while “FA” means they were exactly in a fully automated manner (using the pYIN algorithm). The visualization follows the same convention as in Figs. 4 and
5. However, Hilton et al.'s (26) dataset contains languages that are not in our dataset. Therefore, slightly different color mapping was applied (compare fig. S16). Note that
some large effect sizes (D > 3.5) in the pitch height of our original analysis (i.e., full, SA, 20 s) are not observed in the automated analysis (i.e., full, FA, full length). This is due
to estimation errors in the automated analyses. When erroneous f; values of pYIN are very high in spoken description or very low in singing, relative effects become
smaller than semiautomated methods that remove these errors.
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the “Exploring recording representativeness and automated scal-
ability” section in the Supplementary Materials). We analyzed the
recordings of adult-directed singing and speech of Hilton et al.’s
(26) dataset. We especially analyzed both the full set of their data
and the subset of their data representing languages also present in
our own dataset—English, Spanish, Mandarin, Kannada, and Polish—
to perform a matched comparison with our language varieties.
However, in their dataset, not all individuals made a complete set of
recordings (infant/adult-directed song/speech), and we analyzed re-
cording sets containing matching adult-directed song and adult-
directed speech recordings, which resulted in 209 individuals for the
full data (i.e., individuals from full 21 societies/16 languages) and
122 individuals for the above subset of five languages.

Our data extraction processes involving manual work are funda-
mental frequency extraction, sound onset annotation, and sound
break annotation, and we automated fundamental frequency extrac-
tion since reliable fundamental frequency estimators applicable to
both song and speech signals are readily available. On the other hand,
reliable automated onset and break annotation for both song and
speech is still challenging. For example, we observed that a widely
used syllable nucleus segmentation method (59) failed to capture the
major differences in temporal rate that we identified using manual
segmentation in Fig. 4. Instead, if we had used this automated
method, then we would have mistakenly concluded that there is no
meaningful difference in IOI rates of singing and speech (fig. S15).
Therefore, as described in our stage 1 protocol (compare the “Explor-
ing recording representativeness and automated scalability” section
in the Supplementary Materials), we only focused on the automation
of f extraction that could provide reliable results even using purely
automated methods without requiring manual annotations.

We chose the probabilistic YIN (pYIN) (60) f, extraction algo-
rithm for this analysis. In addition, we analyzed full-length re-
cordings by taking advantage of the efficiency of automated methods.
Note that our timbral brightness analysis is already fully automat-
ed, so we use the same analysis procedure for this feature. Semiau-
tomated analyses could only be performed on 20-s excerpts of our
recordings annotated by the coauthor who recorded them, while
automated analyses could be applied to the full samples. To make
the comparison with our results more interpretable, we have also
added the analysis of Hilton et al.’s (26) data using the same num-
ber of song-speech recording pairs as ours (i.e., randomly selected
75 pairs of recordings), extracting features from the first 20 s. Since
temporal rate, pitch interval size, and pitch declination analyses
require onset and break annotations, we focused on pitch height,
pitch stability, and timbral brightness.

The result suggests that (i) the same statistical significance
could be obtained from Hilton et al.’s (26) data although overall
effect sizes tend to be weakened and (ii) combined effect sizes
based on pYIN with full-length duration only showed negligible
differences from the original analysis involving manual work de-
spite the marked difference in the measurement of some effect
sizes (i.e., no effect sizes larger than 3.5 in the automated analysis
of the pitch height of our data). Note that the differences in pitch
stability in Hilton et al.’s (26) sample (translated Cohen’s D = 0.3)
are small enough to be within our defined equivalence region
(|D] < 0.4) if we had predicted it not only to be equivalent but also
significantly greater than the null hypothesis of no difference
(translated Cohen’s D = 0 corresponding to relative effect of 0.5),
as we predicted (P < 0.005). Similar to Fig. 5, mean values of each

Ozaki et al., Sci. Adv. 10, eadm9797 (2024) 15 May 2024

feature per recording can be found in the Supplementary Materi-
als (figs. S17 to S19).

Alternative analysis approaches for pitch declination
(hypothesis 6)

The only one of our six predictions that was not confirmed was our
prediction that song and speech would display similar pitch declina-
tion. However, only three to four f; slopes (equal to the number of
“phrases” or intervals from the first onset after a break and to the
next break; compare Fig. 3) are, on average, included in the 20-s
length recording of singing and spoken description, respectively,
and so it is possible that this failed prediction could be due to the
relatively more limited amount of data available for this feature.
Therefore, we additionally checked the validity of the result of this
hypothesis test using a longer duration to extract more signs of fy
slopes to evaluate effect sizes. Although we performed exploratory
reanalysis using 30-s recordings that contain five to seven f; slopes
for singing and spoken description on average, still, the P value was
not small enough to reject the null hypothesis (P = 0.48; confidence
interval, 0.17 to 0.60).

Note that we are judging the declination in an f; contour by look-
ing at the sign of the slope of linear regression (i.e., the sign is nega-
tive means declination). Therefore, even if the fy contour is an arch
shape, which means that it has a descending contour at the end part,
it can be judged as no declination if the linear regression shows a
positive slope. Therefore, the declination here means if the f, con-
tour has a descending trend overall and not necessarily if the phrase
is ending in a downward direction.

We report here an additional analysis based on a different ap-
proach for handling the case when signs of f; slopes are not directly
analyzable. Some singing and spoken description recording pairs
only contained negative signs (i.e., descending trend prosody). This
is undesirable for inverse variance-weighted based meta-analysis
methods that we used (e.g., DerSimonian-Laird estimator) since the
SDs of effect sizes become zero, leading to computation undefined.
We used the same procedure used in our power analysis for these
cases (compare the “Power analysis” section in the Supplementary
Materials), but a more widely known practice would be zero-cell
corrections used in binary outcome data analysis (61) (compare the
“Applying zero-cell correction to the signs of f; slopes” section in the
Supplementary Materials). This additional analysis provided virtu-
ally identical results with the main analysis reported in 3.1 (P = 0.66;
confidence interval, 0.15 to 0.71), suggesting that the way to handle
zero-frequency f; slope sign data is not crucial.

Last, we also checked the average trend of f; contours segmented
by onset and break annotations (compare Fig. 7). The averaged f,
contour of spoken description recordings clearly exhibits a pre-
dominantly descending trend, albeit with a slight rise at the end. In
contrast, the averaged f; contour of songs is close to an arch shape,
so that although the second half of songs tend to descend as pre-
dicted, the first half of songs tend to rise, in contrast to speech that
tends to mostly descend throughout the course of a breath. Thus, on
average, spoken pitch contours tend to descend more than sung
pitch contours, explaining our failure to confirm our prediction
that their contours would display similar pitch declination (com-
pare Fig. 5). We also noticed that vocalizers sometimes end their
utterance by raising pitch in their spoken description recordings
(and lyrics recitation as well), causing a slight rise at the end of the
averaged fy contour of spoken description (and lyrics recitation;
compare Fig. 7).
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Fig. 7. Averaged f, contours. fy contours extracted by the segments between onset and break were averaged to visualize the overall trend. The length of contours is
normalized to 128 samples. The average widths of confidence intervals of each category are 0.14 for instrumental, 0.097 for song, 0.060 for lyrics recitation, and 0.065 for
spoken description. The details of the computation is provided in the “Computation of average f, contours of Fig. 7" section in the Supplementary Materials.

Furthermore, the width of SEs around the mean contour
(compare Fig. 7) suggests that spoken description and lyrics recita-
tion have more homogeneous variations of contours than song and
instrumental. This difference may corroborate that music actually
makes more use of the manipulation of the pitch in communication.
Musical melodies are considered to have multiple typical shapes (62,
63), so the overall average contour is not necessarily representative
of all samples.

Explanatory power of the features in song-speech
classification

To probe the explanatory power of features in classifying acoustic sig-
nals into song and speech, we evaluated feature importance using
permutation importance (64) with three simple machine learning
models. Permutation importance informs the influence on the ma-
chine learning model by a particular variable by randomly shuffling
the data of the variable (e.g., imagine a data matrix that row corre-
sponds to observations and column corresponds to variables, and the
data in a particular column are shuffled). Here, we use the permuta-
tion importance, which is the version implemented in Python’s ELI5
package (65). Since how the feature contributes to solving the given
task differs in machine learning models, we used three binary classi-
fication models to mitigate the bias from particular models: logistic
regression with L2 regularization, support vector machines with ra-
dial basis function kernel, and naive Bayes with Laplace smoothing.
The details of the computation are provided in the “Computation of
permutation importance” section in the Supplementary Materials.

The result suggests that temporal rate, pitch stability, and pitch
declination are constantly weighed among these three models

Ozaki et al., Sci. Adv. 10, eadm9797 (2024) 15 May 2024

(compare fig. S22). Several features showing a strong difference
within participants were not evaluated as important in this analysis,
including pitch height and intensity (compare Fig. 4 and fig. S22).
Two reasons can be considered. One reason is that the difference
in features (e.g., pitch height) between song and speech produced
by the same person is not informative in classifying acoustic signals
collected from multiple individuals. In this case, between-participants
consistent differences would be more informative. Another scenario
is that there is an overlap in information among features. Correla-
tion matrices of the features within song and speech (compare
figs. S23 and S24) show that several features have medium to large
correlation (e.g., increase in pitch interval regularity with a decrease
in temporal rate in singing with r = —0.53). Therefore, there is a pos-
sibility that some features are evaluated as unimportant, not because
that feature is irrelevant to classifying song and speech but because
the information in that feature overlaps with other features. This
comes from the limitation of permutation importance that this
measurement does not take into account correlation among fea-
tures. Correlation is considered to cause the underestimation of per-
mutation importance (66).

Inspection of the correlation matrices suggests that complex inter-
actions exist among features. Although what is captured in correlation
matrices is a linear dependency between two variables, nonlinear de-
pendency among features or dependency among more than two vari-
ables can also happen in vocal sound production. Further study is
necessary to accurately disentangle the importance of the features
from complex interactions. However, the current analysis indicates
that there are two features, namely, temporal rate and pitch stability,
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that consistently scored high among the three between-participants
models and confirmed our predicted within-participants differences.
This coincidence suggests that temporal rate and pitch stability may
capture important factors differentiating song and speech across
cultures.

DISCUSSION

Main confirmatory predictions and their robustness

Our analyses strongly support five of our six predictions across an
unprecedentedly diverse global sample of music/speech recordings:
(i) Song uses higher pitch than speech, (ii) song is slower than
speech, (iii) song uses more stable pitches than speech, (iv) song and
speech use similar timbral brightness, and (v) song and speech use
similar sized pitch intervals (Fig. 4). Furthermore, the first three fea-
tures display a shift of distribution along the musi-linguistic con-
tinuum, with instrumental melodies tending to use even higher and
more stable pitches than song and lyric recitation tending to fall in
between conversational speech and song (Fig. 5).

While some of our findings were already expected from previous
studies mainly focused on English and other Indo-European lan-
guages (21, 32-34, 67) [see also the “Literature review of hypotheses
and potential mechanisms” section in the Supplementary Materials
and (36)], our results provide the strongest evidence to date for the
existence of “statistically universal” relationships between music and
speech across the globe. However, none of these features can be con-
sidered an “absolute” universal that always applies to all music/
speech. Figure 4 shows many exceptions for four of the five features:
for example, Parselelo (Kiswahili speaker) sang with a lower pitch
than he spoke, and Ozaki (Japanese speaker) used slightly more
stable pitches when speaking than singing, while many recording
sets had examples where differences in sung versus spoken timbre or
interval size were substantially larger than our designated SESOI. The
most consistent differences are found for temporal rate, as song was
slower than speech for all recording sets in our sample. However,
additional exploratory recordings have revealed examples where
song can be faster than speech [e.g., Savage performing Eminem’s rap
from “Forgot About Dre” (https://osf.io/ba3ht); Parselelos recording
of traditional Moran singing by Ole Manyas, a member of Parselelo’s
ancestral Maasai community (https://osf.io/mfsjz)].

Our sixth prediction—that song and speech use similar pitch
contours—remained inconclusive. Instead of our predicted similari-
ties, our exploratory analyses suggest that, while both song and
speech contours tend to decline toward the end of a breath, they
tend to do so in different ways: song first rising before falling to end
near the same height as the beginning, speech first descending be-
fore briefly rising at the end (Fig. 7). Our prediction was based in
part on past studies by some of us finding similar pitch contours in
human and bird song, which we argued supported a motor con-
straint hypothesis (28, 68). However, our current results suggest that
motor constraints alone may not be enough to explain similarities
and differences between human speech, human song, and animal
song and that future studies directly comparing all three domains
will be needed.

Our robustness checks confirmed that our primary confirmatory
results were not artifacts of our choice to record from a nonrepre-
sentative sample of coauthors. Specifically, (i) language families did
not account for variances in the measured song-speech differences
and similarities (table S3), which means that these differences and
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similarities are cross-linguistically regular phenomena; and (ii) ana-
lyzing only recordings from coauthors who made recordings before
learning our hypotheses produced qualitatively identical conclu-
sions (table S2). Analysis of Hilton et al.’s (26) dataset of field re-
cordings also supplemented our findings, producing qualitatively
identical conclusions, regardless of the precise analysis methods or
specific sample/subsample used (Fig. 6).

Inclusivity and global collaboration

Our use of a “participants-as-coauthors” paradigm allowed us to
discover findings that might not have been possible otherwise. For
example, collaboration with native/heritage speakers who recorded
and annotated their own speaking/singing relying on their own
Indigenous/local knowledge of their language and culture allowed
us to achieve annotations faithful to their perception of vocal/
instrumental sound production that we could not have achieved
using automated algorithms (particularly given that there were no
apparent consistent criteria about what exactly constitutes acoustic
units among our participants). This resulted in our identifying un-
expectedly large differences for features such as temporal rate when
analyzed using their manual segmentations that we would have
substantially underestimated if we relied on automated segmentation
(compare combined effect size of translated Cohen’s D > 1.5 in
Fig. 4 versus D < 0.4 in fig. S15). This highlights that equitable col-
laboration is not only an issue of social justice but also an issue of
scientific quality (69, 70).

On the other hand, this paradigm also created challenges and
limitations. For example, 6 of our original 81 collaborators were un-
able to complete their recordings/annotations, and these were dis-
proportionately from Indigenous and underrepresented languages
from our originally planned sample. These underrepresented com-
munity members tend to be disproportionately burdened with re-
quests for representation, and some also faced additional barriers
including difficulty communicating via translation, loss of internet
access, and urgent crises in their communities (71). Of our coau-
thors representing Indigenous and underrepresented languages who
did complete their recordings and annotations, several were not na-
tive speakers, and so their acoustic features may not necessarily re-
flect the way they would have been spoken by native speakers.
Several of our coauthors have been involved in reviving their lan-
guages and musical cultures despite past and/or continuing threats
of extinction (e.g., Ngarigu, Aynu, and Hebrew) (72, 73). By includ-
ing their contributions as singers, speakers, and coauthors, we also
hope to contribute to their linguistic and musical revival efforts.

Our requirement that all participant data come from coauthors,
and vice versa, led to more severe sampling biases than traditional
studies, as reflected in our discussion of our data showing higher,
more stable-pitched singing than found in Hilton et al’s (26) data.
Many of these limitations have been addressed through our robust-
ness analyses and converging results from our own and Albouy
et al’s (74) reanalyses of Hilton et al’s (26) independent speech/
song dataset described below. However, while our exploratory anal-
yses revealed strong sex differences in pitch height that may reflect
sexual selection, most demographic factors that may affect individ-
ual differences or cultural differences in music-speech relationships
(e.g., musical training, age, and bilingualism) will require more
comprehensive study with larger samples in the future. Because a
key limitation of our participants-as-coauthors paradigm is sam-
ple size (as manual annotations are time-consuming and coauthor
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recruitment is more time-intensive than participant recruitment),
this model may not be feasible for future larger-scale analyses. In-
stead, other paradigms such as targeted recruitment of individuals
speaking selected languages or mixed approaches combining manu-
al and automated analyses may be needed.

Implications from the exploratory analyses

Comparisons with lyrics recitation and instrumental recordings re-
vealed that the relationship between music and language can notice-
ably change depending on the type of acoustic signal. In general,
many features followed the predicted “musi-linguistic continuum”
with instrumental music and spoken conversation most extreme
(e.g., most/least stable pitches respectively), with song and lyric rec-
itation occupying intermediate positions (Fig. 5). However, for tem-
poral rate, songs were more extreme (slower) than instrumental
music, while for phrase length, lyric recitation was more extreme
(shorter) than spoken conversation. Increasing variations of acous-
tic signals and designing the continuum with multiple dimensions
(e.g., by adding further categories such as infant-directed song/
speech or speech intended for stage acting and by mapping music
and language according to pitch, rhythm, and propositional/
emotional functionality) may elucidate a more nuanced spectrum
of musi-linguistic continuum (26, 41, 42).

Our nPVI analysis did not show correlations between music and
speech, as some past studies found (56). Perhaps, a more nuanced
comparison could be realized by analyzing the relationship between
syllabic stress and metrically strong beats (75). However, extending
the concept of stress and meter to music and languages cross-
culturally and cross-linguistically is beyond the scope of the current
study. Another possible approach could be the use of vocalic inter-
vals, as originally analyzed by Patel and Daniele (56), rather than the
I0Is we used. A vocalic interval consists of a vowel or sequence of
vowels, regardless of whether they belong to the same syllable (56,
76). This approach could be easier to implement since it eliminates
the need for a detailed classification of vowels in the language; in-
stead, we could group intervals based on vowel-like sounds.

Limitations on generality
A limitation of our study is that because our paradigm was focused
on isolating melodic and lyrical components of song, the instrumen-
tal melodies we analyzed are not representative of all instrumental
music but only instrumental performance of melodies intended to be
sung. It is thus possible that instrumental music intended for other
contexts may display different trends (e.g., instrumental music to ac-
company dancing might be faster). Different instruments are also
subject to different production constraints, some of which may be
shared with singing and speech (e.g., aerophones such as flutes are
also limited by breathing capacity), and some of which are not (e.g.,
chordophones such as violins are limited by finger motor control).
For example, although most of our instrumental recordings followed
the same rhythmic pattern of the sung melody, Dessiatnitchenko’s
instrumental performance on the Azerbaijani tar was several times
faster than her sung version because the tar requires the performer to
repeatedly strum the same note many times to produce the equiva-
lent of a single long sustained note when singing (listen to her instru-
mental recording at https://osf.io/uj3dn).

Another limitation of our instrumental results is that while none
of our collaborators reported any difficulty or unnaturalness in re-
cording a song and then recording a recited version of the same
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lyrics, many found it unnatural to perform an instrumental version
of the sung melody. For example, while the Aynu of Japan do use
pitched instruments such as the tonkori, they are traditionally never
used to mimic vocal melodies. To compare sung and instrumental
features, all of our collaborators agreed to at least record themselves
tapping the rhythm of their singing, but these recordings without
comparable pitch information (n = 28 recordings) had to be excluded
from our exploratory analysis of pitch features, and even their rhyth-
mic features may not necessarily be representative of the kinds of
rhythms that might be found in purely instrumental music. Like-
wise, the conversational speech recorded here is not necessarily rep-
resentative of nonspoken forms of language (e.g., sign language and
written language).

Comparison with alternative dataset

Interestingly, while the qualitative results using Hilton et al.’s (26)
dataset were identical, the magnitude of their song-speech differ-
ences was noticeably smaller. For example, while song was substan-
tially higher-pitched than speech in both datasets, the differences
were approximately twice as large in our dataset as in Hilton ef al.’s
(26) [~600 cents (half an octave) on average versus ~300 cents
(quarter octave), respectively]. These differences were consistent
even when analyzed using matching subsamples speaking the same
languages and using the same fully automated analysis methods
(Fig. 6), suggesting that they are not due to differences in the sample
of languages or analysis methods we chose.

Instead, we speculate that these differences may be related to dif-
ferences in recording context and participant recruitment. While
our recordings were made by each coauthor recording themselves in
a quiet, isolated environment, Hilton et al.’s (26) recordings were
field recordings designed to capture differences between infant-
directed and adult-directed vocalizations and thus contain various
background sounds other than the vocalizer’s speaking/singing (es-
pecially high-pitched vocalizations by their accompanying infants;
compare fig. S11). This background noise may reduce the observed
differences between speech and song.

Another potential factor is musical experience. Our coauthors
were mostly recruited from academic societies studying music, and
many have also substantial experience as performing musicians. Al-
though the degree of musical experiences of Hilton et al.’s (26) par-
ticipants is not clear, the musical training of our participants is
likely more extensive than a group of people randomly chosen from
general populations. This relatively greater musical training may
have influenced the production of higher and more stable pitches in
singing. We confirmed that there is no obvious difference in pitch
stability of speech between ours and Hilton et al.’s (26) dataset, but
our singing recordings have higher stability than theirs (fig. S18).
Similarly, even if pitch estimation errors due to background noise
erroneously inflated estimated fy of Hilton et al’s (26) recordings
due to noise, our singing showcased the use of more heightened
pitch (fig. S17).

We also observed that our spoken recordings have slightly lower
pitch height than Hilton et al.’s (26) spoken recordings. Possible fac-
tors that may underlie this difference include age (77), body size (78),
and possibly avoiding using low frequencies not to intimidate accom-
panied infants (54). Our instructions to “describe the song you chose
(why you chose it, what you like about it, what the song is about, etc.)”
are also different from Hilton et al.’s (26) instructions to describe “a
topic of their choice (for example... their daily routine),” and these
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task differences can also affect speaking pitch (79). On the other hand,
this result is unlikely to be due to the exposure of Western styles to
participants, since the subset of Hilton et al.’s (26) data including only
English, Mandarin, Polish, Spanish, and Kannada speakers shows al-
most the same result as one with their full data including participants
from societies less influenced by Western cultures.

After our stage 1 Registered Report protocol received In Principle
Acceptance, two independent studies also compared global datasets
of singing and speaking, coming to similar conclusions as us. First,
Albouy et al. (74) also reanalyzed Hilton et al.’s (26) recordings using
different but related methods that also emphasize pitch stability and
temporal rate (“spectrotemporal modulations”). Albouy et al. (74)
transformed audio recordings to extract two-dimensional density
features [spectrotemporal modulations where one axis is temporal
modulations (in hertz) and the other is spectral modulations (in
cycles per kilohertz)] to characterize song and speech acoustically.
Their finding is similar to our results that speech has higher density
in the temporal modulation range of 5 to 10 Hz, which matches the
syllable rate and amplitude modulation rate of speech investigated
cross-culturally (20, 80, 81), on the low spectral modulation range
[rate of change in amplitude due to vocal sound production includ-
ing the initiation of utterances and the transition from consonants to
vowels, which is an automated proxy of our measurement of tempo-
ral rate via manually annotated acoustic unit (e.g., syllable/mora/
note) durations], and song has higher density in the spectral modu-
lation range of 2 to 5 cycles/kHz on the low temporal modulation
range (prominent energy in upper harmonics without fast amplitude
change, potentially related to pitch stability). Their behavioral ex-
periment further confirmed that listeners rely on spectral and
temporal modulation information to judge whether the uttered
vocalization is song or speech, which suggests that spectrotemporal
modulation is an acoustic cue differentiating song and speech.

Next, Anikin et al. (82) curated a different global recording data-
set, including not only song and speech but also various nonverbal
vocalizations (e.g., laughs, cries, and screams). Their analyses using
spectrotemporal modulations also confirmed lower pitch in speech
and steadier notes in singing. The convergent findings of our study
and their studies identifying the same features imply that pitch
height, temporal rate, and pitch stability are robust features distin-
guishing song and speech across cultures.

Evolutionary and functional mechanisms

“Discrete pitches or regular rhythmic patterns” are often consid-
ered defining features of music that distinguish it from speech
[(83) and (25) block quote in the introduction], and our analyses
confirmed this using a diverse cross-cultural sample. At the same
time, we were surprised to find that the two features that differed
most between song and speech were not pitch stability and rhyth-
mic regularity but rather pitch height and temporal rate (Fig. 4).
Pitch stability was the feature differing most between instrumental
music and spoken description, but sung pitches were substantially
less stable than instrumental ones. Given that the voice is the oldest
and most universal instrument, we suggest that future theories of
the evolution of musicality should focus more on explaining the
differences we have identified in temporal rate and pitch height. In
this vein, experimental approaches such as transmission chains
may be effective in capturing causal mechanisms underlying the
manipulation of these parameters depending on communicative
goals (7, 84).
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On the other hand, while pitch height showed larger differ-
ences between speech and song than pitch stability when comparing
within the same individual, our exploratory analysis evaluating
feature importance in song-speech classification showed that pitch
stability was more useful than pitch height comparing song and
speech between individuals. This is consistent with our intuition
that song pitch can be artificially lowered in pitch and speech artifi-
cially raised in pitch without changing our categorical perception of
them as song or speech. Future controlled perceptual experiments
independently manipulating each feature may provide more insight
into how these acoustic features are processed in our brains.

While our results do not directly provide evidence for the evolu-
tionary mechanisms underlying differences between song and
speech, we speculate that temporal rate may be a key feature under-
lying many observed differences. The temporal rate is the only
feature showing almost no difference between singing and the in-
strumental melody (compare fig. S13). While slower singing reduces
the amount of linguistic information that can be conveyed in the
lyrics in a fixed amount of time, it gives singers more time to stabi-
lize the pitch (which often takes some time to reach a stable plateau
when singing), and the slower and more stable pitches may facilitate
synchronization, harmonization, and ultimately bonding between
multiple individuals (11). However, to ensure comparability be-
tween song and speech, we only asked participants to record them-
selves singing solo, even when songs are usually sung in groups in
their culture, so future direct comparison of potential acoustic dif-
ferences between solo and group vocalizations (85) may be needed
to investigate potential relationships between our acoustic features
and group synchronization/harmonization.

Furthermore, slow vocalization may also interact with high pitch
vocalization since it needs deeper breaths to support sustained
pitches, which may lead to an increase in subglottal pressure and
accompanying higher pitch (86). The use of higher pitches in sing-
ing may also contribute to more effective communication of pitch
information. Sensitivity to loudness for pure tones almost mono-
tonically increases up to 1 kHz (87), but, generally, the frequency
range of fy values of human voice is below 1 kHz, so it is reasonable
to heighten pitches to exploit higher loudness sensitivity, which may
be helpful for creating bonding through acoustic communication
extensively using pitch control. Furthermore, in speech, we recog-
nize phonemes by the shape of formants, which characterizes how
upper harmonic content is emphasized or attenuated. In speech, the
frequency content conveying information is not fundamental fre-
quency but harmonics, whereas in music, it is the lower fundamen-
tal frequencies that contain the crucial melodic content (9). We
speculate that this difference in emphasis on formants versus funda-
mental frequency may underlie the difference in pitch height be-
tween speech and music we have identified.

The exploratory analysis of additional features can also be inter-
preted from the same viewpoint that extra potential differentiating
features also function to enhance the saliency of pitch information:
Use of longer acoustic phrases, greater sound pressure, and less
noisy sounds may ease the intelligibility of pitch information. This
increased loudness and salience might also support evolutionary
propositions that music evolved as a mnemonic device (88) or as a
night-time, long-distance communication device (89). The lyrics of
the chosen songs frequently mention “night,” “moon,” “sleep,” and
“love,” which may further support the nocturnal hypothesis (89).
On the other hand, similar timbral brightness, pitch interval size,
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and pitch range between song and speech may be due to motor
and mechanistic constraints, similar to the difficulty of rapid transi-
tioning to distant pitches caused by the limiting control capacity of
tension in the vocal folds. Since utilization of pitch can also be found
in language (e.g., tonal languages; increasing the pitch of the final
word in an interrogative sentence in today’s English and Japanese),
inclusively probing what we can communicate with pitch in human
acoustic communication may give insights into the fundamental na-
ture of songs.

Overall, our Registered Report comparing music and speech
from our coauthors speaking diverse languages shows strong evi-
dence for cross-cultural regularities in music and speech amidst
substantial global diversity. The features that we identified as differ-
entiating music and speech along a musi-linguistic continuum—
particularly pitch height, temporal rate, and pitch stability—may
represent promising candidates for future analyses of the (co)evolu-
tion of biological capacities for music and language (9, 11, 83).
Meanwhile, the features we identified as shared between speech and
song—particularly timbral brightness and pitch interval size—
represent promising candidates for understanding domain-general
constraints on vocalization that may shape the cultural evolution of
music and language (7, 28, 90, 91). Together, these cross-cultural
similarities and differences may help shed light on the cultural and
biological evolution of two systems that make us human: music and
language.

MATERIALS AND METHODS

Analysis plan

We test two types of hypotheses, corresponding to the hypothesis of
difference and the hypothesis of similarity, respectively. Formally,
one type of null hypothesis is whether the effect size of the difference
between song and speech for a given feature is null. This hypothesis
is applied to the prediction of the statistical difference. Another type
of null hypothesis is whether the effect size of the feature exceeds the
SESOI (92). This hypothesis is applied to the prediction of statistical
similarity. In this study, we particularly rely on the SESOI of 0.4 sug-
gested by the review of psychological research (93). There are various
ways to quantify the statistical difference or similarity (e.g., Kullbak-
Leibler divergence, Jensen-Shannon divergence, Earth mover’s dis-
tance, energy distance, L, norm, and Kolmogorov-Smirnov statistic).
Here, we focus on effect sizes to facilitate interpretation of the mag-
nitudes of differences.

Since our main interest lies in the identification of which features
demonstrate differences or similarities between song and speech, we
perform the within-participants comparison of the six features be-
tween the pairs of singing and speech, using the spoken description
rather than the lyric recitation as the proxy for speech (compare red
boxes in Fig. 1; the comparisons with lyrics recitation and with in-
strumental versions are saved for exploratory analyses). In addition,
terms in the computed difference scores are arranged so that for our
predicted differences (H1 to H3), a positive value indicates a differ-
ence in the predicted direction (compare Fig. 8).

Evaluation of difference in the magnitude of each feature is per-
formed with nonparametric relative effects (94), which is also known
as stochastic superiority (95) or probability-based measure of effect
size (96). This measure is a nonparametric two-sample statistics and
allows us to investigate the statistical properties of a wide variety of
data in a unified way.
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We apply the meta-analysis framework to synthesize the effect size
across recordings to make statistical inference for each hypothesis
(Fig. 8). In this case, the study sample size corresponds to the number
of data points of the feature in a recording, and the number of studies
corresponds to the number of language varieties. We use Gaussian
random-effects models (97, 98) (compare the “Statistical models” sec-
tion in the Supplementary Materials), and we frame our hypotheses as
the inference of the mean parameter of Gaussian random-effects
models, which indicates the population effect size.

Our null hypotheses for the features predicted showing differ-
ence is that the true effect size is zero (i.e., relative effects of 0.5). On
the other hand, the null hypotheses for the feature predicted show-
ing similarity is that the true effect size is lower or larger than small-
est effect sizes of interest in psychology studies (i.e., relative effects of
0.39 and 0.61 corresponding to +0.4 of Cohen’s D) (93). We test six
features and, thus, test six null hypotheses.

Since we test multiple hypotheses, we use the false discovery rate
method with the Benjamini-Hochberg step-up procedure (99) to de-
cide on the rejection of the null hypotheses. We define the o level
as 0.05.

For the hypothesis testing of null effect size (H1 to H3), we test
whether the end points of the confidence interval of the mean pa-
rameter of the Gaussian random-effects model are larger than 0.5.
We use the exact confidence interval proposed by Liu et al. (98)
and Wang and Tian (100) to construct the confidence interval. For
the hypothesis testing of equivalence (H4 to H6), we first estimate
the mean parameter (i.e., overall treatment effect) with the exact
confidence interval (98, 100) and the between-study variance with
the DerSimonian-Laird estimator (101). Since Gaussian random-
effects models can be considered Gaussian mixture models having
the same mean parameter, the overall variance parameter can be
obtained by averaging the sum of the estimated between-study
variance and the within-study variance. Then, we plug the mean
parameter and overall variance into Romano’s (102) shrinking al-
ternative parameter space method to test whether the population
mean is within the SESOI as specified above.

Our choice of an SESOI of Cohen’s D = 0.4 based on Brysbaert’s
(93) recommendation after reviewing psychological studies is ad-
mittedly somewhat arbitrary. Future studies might be able to choose
a different SESOI on a more principled basis based on the data
and analyses we provide here, and the value of our database for
such hypothesis generation and exploration is an important ben-
efit beyond the specific confirmatory analyses proposed. Howev-
er, we currently are faced with a chicken-and-egg problem in that
it is difficult to justify an a priori SESOI for analysis until we have
undertaken the analysis. The same argument may hold for Bayes-
ian approaches (e.g., highest-density regions, region of practical
equivalence, and model selection based on Bayes factors) inde-
pendent of the choice of prior distributions. We thus chose to rely
on Brysbaert’s recommended SESOI of Cohen’s D = 0.4 (and its
equivalent relative effect of p;e = 0.61) in the absence of better
alternatives.

Visual and aural inspections of the distribution of pilot data
(figs. S2 and S9; audio recordings can be heard at https://osf.io/
mzxc8/) also suggest that it is a reasonable (albeit arbitrary) thresh-
old given the variance observed across a range of different features
and languages. To enable the reader/listener to assess what an SESOI
might sound like, we have created versions of the pilot data artifi-
cially raising/lowering the temporal rate and pitch height of sung/
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Fig. 8. Schematic overview of the analysis pipeline from raw audio recordings to the paired comparisons. This illustration is based on the pilot analysis of stage 1
(fig. S2), which served as a foundation for the subsequent main confirmatory analysis (Fig. 4). Recording sets 1 and 2 represent pilot data of singing and speaking in Yoruba
and Farsi by coauthors F.N. and S.H., respectively. From each pair of song/spoken audio recordings by a given person, we quantify the difference using the effect size for
each feature. Pre is the relative effect (converted to Cohen’s D for ease of interpretability). In both cases, the distributions of sung and spoken pitch overlap slightly, but
song is substantially higher on average (Cohen'’s D > 2). To synthesize the effect sizes collected from each recording pair to test our hypotheses, we apply meta-analyses
by treating each recording pair as a study. This approach allows us to make an inference about the population effect size of features in song and speech samples. This
example focuses on just one feature (pitch height) applied to just two recording sets, but the same framework is applied to the other five features and all recording sets
in the actual analysis. Different types of hypothesis testing are applied depending on the feature (i.e., hypothesis of difference and hypothesis of similarity).

spoken examples so one can hear what our proposed SESOI would
sound like for a range of languages and features [compare the “Ma-
nipulation of features to demonstrate our designated SESOI (Cohen’s
D =0.4)” section in the Supplementary Materials and table S6; audio
files also at https://osf.io/8mcev].
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Ole Manyas are included as part of a separate ethical approval by the
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Translated Cohen's D

form” in the Supplementary Materials). Each recording set analyzed
comes from a named coauthor who speaks that language as their
first or heritage language.
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